<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-5 (Proving Angles Congruent)

Vertical ∠'s	$2 \angle s$ whose sides form 2 pairs of opposite rays.
Adjacent ∠'s	2 coplanar $\angle s$ with: 1. a common side 2. a common vertex 3. no common interior pts
Complementary ∠'s	2 \angle 's, sum of measures is 90 Do <u>not</u> have to share common side or vertex One is the <u>complement</u> of the other.
Supplementary ∠'s	$2 \ \angle s$, sum of measures is 180 Do <u>not</u> have to share common side or vertex One is the <u>supplement</u> of the other. $B = 130^{\circ}$
Drawing conclusions from diagrams	 Can: 1. adjacent ∠'s 2. adjacent supplementary ∠'s 3. vertical ∠'s
	 Can not <u>unless</u> have special markings or info: 1. congruent ∠'s or segments (marked) 2. right ∠'s (marked ror measured) 3. non-adjacent supplementary ∠'s (marked or measured) 4. parallel lines (matching arrow head marks mid-line) 5. perpendicular lines (⊥symbol)

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-5 (Proving Angles Congruent)

Example	Pg 97 Example 2 <optional, as="" needed=""></optional,>	
Example	Pg 97 Check Understanding 2 <optional, as="" needed=""></optional,>	
Proving ∠'s congruent	Given: $\angle 1$ and $\angle 2$ are vertical angles.Prove: $\angle 1 \cong \angle 2$ Proof: $m\angle 1 + m\angle 3 = 180$ $m\angle 2 + m\angle 3 = 180$ $m\angle 1 + m\angle 3 = m\angle 2 + m\angle 3$ Subst Prop (1 side) $m\angle 1 = m\angle 2$ $\angle 1 \cong \angle 2$ Defin Congruent $\angle s$	
Q.E.D.	"Which was demonstrated" Latin: Quod Erat Demonstrandum	
What is a theorem?	A proven conjecture	
Theorem 2-1	Vertical Angles Theorem Vertical \angle 's are congruent $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$ 1	
Using Theorem 2-1	Pg 99, Check Understanding 4 Solve for x and justify each step. Given: $\angle 1 \cong \angle 2$ $m \angle 1 = m \angle 2$ Defn congruent angles 4x = 3x + 35 Substitution Prop (all on one side) x = 35 Subtraction Prop = (-3x each side)	
	$m \angle 1 = m \angle 2 = 140$ $m \angle 3 = m \angle 4 = 180 - 140 = 40$	

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-5 (Proving Angles Congruent)

Proving supplements are congruent	Given: $\angle 1$ and $\angle 2$ are supplement $\angle 2$ and $\angle 3$ are supplement Prove: $\angle 1 \cong \angle 3$ Proof: $m\angle 1 + m\angle 2 = 180$ $m\angle 2 + m\angle 3 = 180$ $m\angle 1 + m\angle 2 = m\angle 2 + m\angle 3$ $m\angle 1 = m\angle 3$ $\angle 1 \cong \angle 3$	entary ntary Angle Addition Postulate
Theorem 2-2	Congruent Supplements Theore If $2 \angle s$ are supplements of the then the $2 \angle s$ are congruent.	$\underline{\operatorname{cm}}$ same \angle (or of congruent \angle 's)
Theorem 2-3	Congruent Complements Theorem If $2 \angle s$ are complements of the same \angle (or of congruent $\angle s$) then the $2 \angle s$ are congruent.	
Theorem 2-4	All right \angle 's are congruent.	
Theorem 2-5	If $2 \angle s$ are congruent and suppright \angle .	plementary, then each is a